December 1998
MA214: DISCRETE MATHEMATICS

QUESTION 3

Total Marks: 20 Marks

Click here to access other questions

Click to access
SUGGESTED SOLUTIONS
for Question 3

 

(a) Let p and q be statements.
(i) What is tautology? [1]
(ii) Write down the truth table for the compound statement
(p darrow.GIF (61 bytes) ~q) darrow.GIF (61 bytes) ((~pinvertedv.gif (53 bytes)~q) v (pinvertedv.gif (53 bytes)q)).You may wish to copy and complete the truth table below:
p q ~p ~q p darrow.GIF (61 bytes) ~q ~pinvertedv.gif (53 bytes)~q pinvertedv.gif (53 bytes)q (~pinvertedv.gif (53 bytes)~q) v (pinvertedv.gif (53 bytes)q) (p darrow.GIF (61 bytes) ~q) darrow.GIF (61 bytes) ((~pinvertedv.gif (53 bytes)~q) v (pinvertedv.gif (53 bytes)q))
T T
T F
F T
F F
[5]
Comment on your result.

 

[1]
(b) Use the Principle of Mathematical Induction to prove that the proposition P(n) is true for all positive integers n, when P(n) is the statement.

formula2.gif (399 bytes)

 

[5]
(c) Consider the following argument:

If I am on holiday then I am relaxed. If it is not August then I am not on holiday. I am not relaxed therefore it is not August.

Defining a, h and r as follows:

a  It is August
h  I am on holiday
r   I am relaxed

deduce whether or not this argument is valid, showing your working in truth tables.

 

[6]
(d) Find counter examples to provide that the following statements are false.
(i) invertedv2.GIF (63 bytes)x (x is odd darrow.GIF (61 bytes) x is prime) [1]
(ii) ~ (invertede.gif (61 bytes)x smallequ.gif (60 bytes) invertedv.gif (53 bytes) x2 = 49)) [1]