December 1999
MA214 : DISCRETE MATHEMATICS

QUESTION 2

Total Marks: 15 Marks

Click here to access other questions

Click to access
SUGGESTED SOLUTIONS
for Question 2

(a)

Consider the following relations on the set {1 ,2 ,3 ,4 }


R 1 ={(1 ,1 ),(1 ,2 ),(2 ,1 ),(2 ,2 ),(3 ,4 ),(4 ,1 ),(4 ,4 )}

R 2 ={(1 ,1 ),(1 ,2 ),(2 ,1 )}

R 3 ={(1 ,1 ),(1 ,2 ),(1 ,4 ),(2 ,1 ),(2 ,2 ),(3 ,3 ),(4 ,1 ),(4 ,4 )}

R 4 ={(2 ,1 ),(3 ,1 ),(3 ,2 ),(4 ,1 ),(4 ,2 ),(4 ,3 )}

R 5 ={(1 ,1 ),(1 ,2 ),(1 ,3 ),(1 ,4 ),(2 ,2 ),(2 ,3 ),(2 ,4 ),(3 ,3 ),(3 ,4 ),(4 ,4 )}

R 6 ={(3 ,4 )}


(i)Which of these relations are reflexive?Explain.[2 marks ]


(ii)Which of these relations are symmetric?Explain.[2 marks ]


(iii)Which of these relations are antisymmetric?Explain.[2 marks ]


(iv)Which of these relations are transitive?Explain.[2 marks ]

 

[8]
(b)

Let A ,B and C be sets.Show,using algebraic laws,that


(i)(A U B )(A U B U C )[2 marks ]


(ii)(A n B n C )(A n B )[2 marks ]

 

[4]
(c)

Why is f not a function from R to R in the following equations?


(i)f (x )=1 /x [1 mark ]


(ii)f (x )= [1 mark ]


(iii)f (x )= [1 mark ]

[3]